Layer-by-layer carbon nanotube bio-templates for in situ monitoring of the metabolic activity of nitrifying bacteria
نویسندگان
چکیده
Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite’s biocompatibility with wastewater effluent environments and its pH sensing performance.
منابع مشابه
Single walled carbon nanotube in the reaction layer of gas diffusion electrode for oxygen reduction reaction
In this paper, the effect of surface area of reaction layers in gas diffusion electrodes on oxygen reduction reaction was investigated. For this purpose, various amounts (0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5 and zero %wt of total loading of reaction layer) of single walled carbon nanotube (SWCNT) were inserted in the reaction layer. The performance of gas diffusion electrodes for oxygen reduction re...
متن کاملDetection of napropamide by microwave resonator sensor using carbon nanotube – polypyrrole- chitosan layer
This paper presents the design and fabrication of proximity coupled feed disk resonator coated with Multi Walled Carbon Nanotubes (MWCNTs) and Polypyrrole-Chitosan (PPy-CHI) layers as a napropamide sensor. Computer Simulation Technology (CST) microwave studio was used to obtain the best design of disk resonator and feed line position in 5 GHz resonant frequency. Also, MWCNTs - PPy-CHI layers we...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملThe effects of the combination of bioplastic and its degrading bacteria (Genus Acidovorax) on the metabolic activity of anaerobic bacteria in Siberian sturgeon (Acipenser baerii) fingerlings hindgut by using CLPP
Community Level Physiological Profiles (CLPP) is novel method to evaluate microbial activity and diversity in ecosystems. According to the previous findings, poly-β-hydroxybutyrate (PHB) as a bio-control product, increases bacterial diversity in some aquatic animals. In this study, the effects of four experimental diets (control, combination of two PHB degrading bacteria, 2% PHB, bacteria+ 2% P...
متن کامل